Neuartige basische Liganden für die homogenkatalytische Methanolcarbonylierung

X *. Synthese, Eigenschaften und Komplexchemie mehrzähniger Alkoxyethylphosphane und ihr Verhalten als Steuerliganden bei der Methanolhydrocarbonylierung

Ekkehard Lindner*, Sonja Meyer, Peter Wegner, Berthold Karle, Anselm Sickinger und Bernhard Steger

Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen 1 (B.R.D.) (Eingegangen den 15. April 1987)

Abstract

Bi-, tri-, and quadridentate alkoxyethylphosphanes of the type $R_n^1 P(CH_2CH_2 OR^2)_{3-n}$ are obtained from the corresponding phosphides $M_{3-n}PR_n^1$ (M = Li, Na/K; $R^1 = Ph$, Cy (= cyclo-C₆H₁₁)) and 1,2-alkoxychloroethanes ClCH₂CH₂OR² (R² = Me, i-Pr). It was demonstrated using the following examples, Ph₂PCH₂CH₂OMe, Cy₂PCH₂CH₂OMe, and Cy₂PCH₂CH₂O(i-Pr), that these ligands lead to the chelate complexes (OC)₄WPR_2^1CH_2CH_2OR² with (OC)₅WTHF. The complexes (OC)₅WPR_2^1CH_2CH_2OR² with elimination of CO. The process is reversible in the presence of carbon monoxide. The influence of different ether phosphane ligands on the methanol conversion and the selectivity to ethanol and acetaldehyde is discussed in relation to different parameters upon application of Co(OAc)₂/I₂ and CoI₂ as components of the catalyst. CoI₂ proves to be superior to the Co(OAc)₂/I₂ system.

Zusammenfassung

Zwei-, drei- und vierzähnige Alkoxyethylphosphane des Typs $R_n^1 P(CH_2CH_2-OR^2)_{3-n}$ erhält man aus den entsprechenden Phosphiden $M_{3-n}PR_n^1$ (M = Li, Na/K; $R^1 = Ph$, Cy (= cyclo-C₆H₁₁)) und 1,2-Alkoxychlorethanen ClCH₂CH₂OR² (R² = Me, i-Pr). An den Beispielen Ph₂PCH₂CH₂OMe, Cy₂PCH₂CH₂OMe und

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

^{*} Für IX. Mitteilung siehe Lit. 1.

 $Cy_2PCH_2CH_2O(i-Pr)$ wurde gezeigt, dass diese Liganden mit $(OC)_5WTHF$ zu den Chelat-Komplexen $(OC)_4WPR_2CH_2CH_2OR^2$ führen. Als Zwischenstufen treten die Komplexe $(OC)_5WPR_2CH_2CH_2OR^2$ auf, welche beim Bestrahlen unter CO-Entwicklung in $(OC)_4WPR_2CH_2CH_2OR^2$ übergehen. Der Vorgang ist bei Anwesenheit von Kohlenmonoxid reversibel. Der Einfluss verschiedener Ether-Phosphan-Liganden auf den Methanolumsatz und die Selektivität zu Ethanol bzw. Acetaldehyd bei Verwendung von $Co(OAc)_2/I_2$ bzw. CoI_2 als Katalysatorkomponenten wird in Abhängigkeit verschiedener Parameter diskutiert. CoI_2 erweist sich dem System $Co(OAc)_2/I_2$ als überlegen.

Einleitung

Die homogenkatalysierte Methanolhydrocarbonylierung [2,3] bietet eine prinzipielle Methode, zu sauerstoffhaltigen C2-Kohlenwasserstoffen zu gelangen. Wir konnten verschiedentlich zeigen [4,5], dass speziell konzipierte P,O-Liganden sich sehr günstig auf den Methanolumsatz und die Acetaldehyd- bzw. Ethanolselektivität auswirken. Sie enthalten mit dem Phosphor ein "Ankeratom", das den festen Kontakt zum Katalysatormetall herstellt [6]. Zusätzliche, in cyclische Ether eingebaute Sauerstoffdonatoren bilden nur schwache Wechselwirkungen mit dem Koordinationszentrum aus, damit während des Katalysecyclus (oxidative Addition des Substrats und reduktive Eliminierung des Produkts) ständig reversibel freie Koordinationsstellen zur Verfügung stehen, ohne dass der P,O-Ligand vom Komplexrumpf abgetrennt wird. Der leichte Zugriff auf das vakante Sauerstoffatom durch das Metallzentrum führt zudem zu einer Erhöhung der Lebensdauer des Katalysatorsystems. Die Einführung geeigneter Ether-Phosphane hat auch eine Erhöhung der Elektronendichte am Katalysatormetall zur Folge, was sich günstig auf die oxidative Addition auswirkt. Diese Arbeit befasst sich erstmals mit der Synthese mehrzähniger Alkoxyethylphosphane, ihrem komplexchemischen Verhalten und Einfluss auf die Selektivität und den Umsatz bei der Acetaldehyd- bzw. Ethanolsynthese aus Methanol durch Hydrocarbonylierung.

Resultate und Diskussion

Durch Einwirkung der Chlorether $ClCH_2CH_2OR^2$ ($R^2 = CH_3$, $CH(CH_3)_2$) auf Ph_2PLi bzw. Cy_2PLi in THF erhält man gemäss Gl. 1 die zweizähnigen P,O-Liganden $R_2^1PCH_2CH_2OR^2$, **1a**, **b** und **3a**, **b** [7,8].

$$M_{3-n}PR_{n}^{1} + (3-n)ClCH_{2}CH_{2}OR^{2} \xrightarrow{-(3-n)MCl} R_{n}^{1}P(CH_{2}CH_{2}OR^{2})_{3-n}$$
(1)
(1a-3a, 1b-3b, 4)

	1a	2a	1b	2b	3a	3b	4
Μ	Li	Li	Li	Li	Li	Li	Na/K
n	2	1	2	1	2	2	0
\mathbb{R}^1	Ph	Ph	Су	Су	Ph	Су	
R ²	Me	Me	Me	Me	i-Pr	i-Pr	Me

 $Cy = cyclo-C_6H_{11}$

In entsprechender Weise wurden aus PhPLi₂ bzw. CyPLi₂ in n-Hexan die dreizähnigen Alkoxyethylphosphane $R^1P(CH_2CH_2OR^2)_2$ (**2a**, **b**) zugänglich gemacht.

Tabelle 1

	δ (ppm) ^a	v_{as} (C ₂ O)	v(C≡O)			
	$-21.8^{b,c}$	1112sst ^d				
1b	$-11.1^{e,c}$	1114sst ^d				
2a	$-34.9^{b,c}$	1112sst ^d				
2b	$-26.2^{e,c}$	1116sst ^d				
3a	$-21.1^{e,c}$	1072st ^d				
3b	$-10.5^{e,c}$	1070st ^d				
4	$-37.9^{e,c}$	1110sst ^d				
5a	3.3 (247) ^{f,c}	1112m ⁸	2073s,	1954sch,	1945sst ^f	
5b	13.9 (232) b,h	1110m ^g	2069s,	1944sch,	1938sst ^f	
ճե	16.5 (240) e,h	1062s ^g	2068s,	1988m,	1944sch,	1938sst ^f
7a	39.4 (254) ^{e,h}	1090s ^g	2020s,	1901sst,	1857m ⁱ	
7b	50.4 (204) e,h	1053s ⁸	2012s,	1892sch,	1884sst,	1854m ⁱ
8b	42.0 (240) e,h	1026s ^g	2012m,	1896sch,	1885sst,	1852st ⁱ

 ${}^{31}P{(^{1}H)}$ -NMR-Daten und einige charakteristische IR-Valenzschwingungen (cm⁻¹) in den Spektren von 1–8

^a In Klammern ¹⁸⁴W-³¹P-Kopplungskonstanten J (Hz). ^b In CH₂Cl₂. ^c Ext. Standard 85% Phosphorsäure/D₂O. ^d Film. ^e In THF. ^f In n-Hexan. ^g In KBr. ^h Bei -30 °C, ext. Standard 85% Phosphorsäure/Aceton-d₆. ⁱ In THF ausgeblendet.

Den potentiell vierzähnigen Liganden 4 gewinnt man schliesslich durch Umsetzung eines Na₃P/K₃P-Gemisches mit ClCH₂CH₂OCH₃ in Dimethoxyethan (DME) [9,10]. Bei **1a–3a**, **1b–3b** und 4 handelt es sich um farblose, luftempfindliche Flüssigkeiten, deren Zusammensetzung sich aus den Massen-, IR- und NMR-Spektren ergibt. Besonders charakteristisch ist die Lage der meist sehr intensiven Absorption der antisymmetrischen C₂O-Valenzschwingung in den IR-Spektren und die chemische Verschiebung der ³¹P{¹H}-Signale (vgl. Tab. 1). Alle beschriebenen Phosphane sind gut löslich in polaren, mässig löslich dagegen in unpolaren Solventien.

Zur Untersuchung ihrer komplexchemischen Eigenschaften, die am Beispiel der zweizähnigen Phosphane **1a**, **b** und **3b** geprüft wurden, eignen sich Reaktionen mit $(OC)_5WTHF$ in THF [11], die zu den in allen organischen Solventien gut löslichen, hellgelben bis farblosen Pentacarbonylwolfram-Komplexen **5a**, **b**, **6b** führen (Gl. 2).

Die Entfernung eines CO-Moleküls aus **5a**, **b**, **6b** gelingt auf thermischem Wege nicht. Dagegen führt die photochemisch induzierte Eliminierung zum Erfolg [4]. Beim Bestrahlen einer Lösung von **5a**, **b** oder **6b** in n-Pentan bei -50 °C fallen schon nach kurzer Zeit die gelben Tetracarbonylwolfram-Komplexe **7a**, **b** und **8b** an, in denen die frei werdende Koordinationsstelle durch den Sauerstoff der Alkoxyethyl-Gruppe besetzt wird (Gl. 3). **7a**, **b** und **8b** erweisen sich gegenüber Luftsauerstoff erstaunlich resistent und sind bei Raumtemperatur im festen Zustand mehrere Wochen unzersetzt lagerfähig. In polaren organischen Solventien lösen sie sich unter Zersetzung, wobei bezüglich der Zerfallsgeschwindigkeit eine Abstufung in der Reihe **7a** > **7b** > **8b** auftritt. Die gegenüber **7a**, **b** relativ höhere, schon mit den Tetracarbonyl(tetrahydrofurfuryl)wolfram-Komplexen vergleichbare Stabilität [4] von **8b** in Lösung führen wir auf den stärkeren +*I*-Effekt der Isopropyl-Gruppe zurück, die dem Sauerstoff bessere Donoreigenschaften verleiht. Die Isolierung entsprechender Tetracarbonylwolfram-Verbindungen mit den drei- und vierzähnigen

P,O-Liganden 2a, b und 4 ist nicht mehr möglich, da sie sich oberhalb -50 °C bereits zersetzen.

In den Felddesorptions-Massenspektren zeigen die Komplexe 5a, b, 6b, 7a, b und 8b jeweils den erwarteten Molekülpeak.

Im 5μ m-Bereich der IR-Spektren von **5a**, **b** und **6b** (vgl. Tab. 1) beobachtet man die für Pentacarbonylwolfram-Komplexe charakteristischen drei C=O-Absorptionen $(2A_1 + E)$, wobei diejenige des zum P,O-Liganden *trans*-ständigen CO-Moleküls nur als Schulter auftritt. Der P,O-Ligand erniedrigt die C_{4v} -Symmetrie in **6b** derart, dass im Spektrum zusätzlich noch die eigentlich IR-verbotene B₁-Absorption sichtbar wird. Durch die Polarität der W-O-Bindung lassen sich die IR-Spektren der Komplexe **7a**, **b** und **8b** nur in polaren Solventien aufnehmen, die eine verminderte Auflösung der Banden zur Folge haben. Ausserdem tritt das Lösungsmittel mit dem P,O-Liganden in Konkurrenz, so dass schon nach kurzer Zeit Folgereaktionen von **7a**, **b** und **8b** zu beobachten sind. Aufgrund dieser Linienverbreiterung lassen sich im Spektrum von **7a** nur drei der erwarteten vier langwellig verschobenen Absorptionen erkennen [12].

Die im Vergleich zu den nichtkomplexierten Liganden 1a, b, 3b und zu den Komplexen 5a, b, 6b um bis zu ca. 60 cm⁻¹ nach niedrigeren Wellenzahlen verschobene Bande für die antisymmetrische C₂O-Valenzschwingung des Etherrests spricht für direkten W-O-Kontakt in 7a, b und 8b (vgl. Tab. 1).

Durch die Komplexierung der P,O-Liganden **1a**, **b**, **3b** zu **5a**, **b**, **6b** werden die Signale in den ³¹P{¹H}-NMR-Spektren um ca. 25 ppm unter Auftreten von ¹⁸³W-Satelliten nach tieferem Feld verschoben. Die Überführung von **5a**, **b**, **6b** in die Chelat-Komplexe **7a**, **b**, **8b** resultiert in einer weiteren typischen Tieffeld-Verschiebung der ³¹P{¹H}-Signale mit einem Ringbeitrag Δ_R zwischen 25.5 und 36.5 (vgl. Tab. 1), wodurch ein zweiter deutlicher Hinweis auf W-O-Wechselwirkung geliefert wird [13].

7a fällt aus CH_2Cl_2 bei -30 °C in Form goldgelber, glänzender, röntgenographisch untersuchter Einkristalle an. Die Kristallstrukturbestimmung bestätigt die spektroskopischen Befunde. Eine Verfeinerung der Struktur versagt jedoch wegen Fehlordnung [14*].

Hochdruckversuche

Im Anschluss an die komplexchemischen Untersuchungen wurde der Einfluss der Ether-Phosphane 1a-3a und 4 auf den Methanolumsatz und die Selektivität zu Ethanol bzw. Acetaldehyd bei der Methanolhydrocarbonylierung geprüft. Als Katalysatormetall diente Cobalt in Form seines Acetats bzw. Iodids. Im Falle von Co(OAc)₂ fungierte I₂ als Aktivator. Als Ausgangsmaterial für die Hydrierung des zunächst gebildeten Acetaldehyds eignete sich RuCl₃ · 3H₂O [15].

Die Versuche 1–3 zeigen deutlich den Einfluss des Synthesegasverhältnisses auf die Zusammensetzung der Produkte (vgl. Tab. 2). Ein höherer CO-Anteil begünstigt zwar den Umsatz, führt aber gleichzeitig zu einer vermehrten Bildung von Acetaten und Essigsäure, während sich der umgekehrte Fall bei leichtem Umsatzrückgang vorteilhaft auf die Ethanolbildung auswirkt. Wie sich in früheren Untersuchungen bereits zeigte, erweist sich ein Verhältnis von H₂/CO = 3/2 als optimal [4,16].

Vergleicht man die Versuche 7 und 8 miteinander, so beobachtet man, dass eine Druckverminderung um 100 bar und, nach Druckabfall, erneute Synthesegaszugabe von 50 bar zu erhöhten Umsätzen und EtOH-Selektivitäten führt. Dies gilt allerdings nur für eine H_2 /CO-Zusammensetzung von 3/2. Steigert man den H_2 -Gehalt und verlängert die Reaktionszeit, so wirken sich diese Parameter ungünstig auf den Umsatz aus (vgl. Tab. 2, Versuch Nr. 9).

Der P,O-Ligand 4 weist die geringsten Umsätze und Ethanol-Selektivitäten auf. Aus IR-spektroskopischen Analysen der Gasphase konnte speziell bei Versuch Nr. 6 ein erheblicher Anteil an Dimethylether festgestellt werden. Grund hierfür ist der H₂-Partialdruck von 200 bar, der die Bildung von HI begünstigt. Obwohl 4 als reines Alkylphosphan in der Reihe der untersuchten Liganden die stärkste Base darstellt und damit die oxidative Addition von CH_3I an den cobalthaltigen Katalysatorkomplex erleichtern sollte [17], bleibt dessen Effizienz weit hinter der von 1a und 2a zurück. Ursache dürften Oxidationsempfindlichkeit, die geringere thermische Stabilität und Neigung zur Phosphoniumsalzbildung (mit CH_3I , aus CH_3OH und HI gebildet) sein. Erhöht man, ausgehend von Versuch Nr. 4, den Synthesegasdruck bei Versuch Nr. 6 um 50 bar, stellt man zwar etwa 20% mehr Umsatz fest, jedoch nimmt auch die Nebenproduktbildung nicht unerheblich zu.

Um weitere Erkenntnisse über den noch nicht vollständig aufgeklärten Katalysekreislauf zu gewinnen und damit zu einer Verbesserung des Katalysatorgemisches

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Tabelle 2

Tabelle 3

Versuchs-Nr.	r. Umsatz	Selektivitäten ^a (%)				Druck	H ₂ /CO	Ligand	Reaktionszeit	
	(%)	EtOH	MeOAc	EtOAc	HOAc	PrOH	(bar)			(h)
1	79.9	37.6	6.5	13.9	3.6	3.6	300	1/1	2a	2.5
2	82.2	18.3	15.3	18.7	6.8	1.1	300	1/2	2a	2.5
3	75.3	43.0	2.6	6.8	0.8	3.9	300	3/2	2a	2.5
4	37.7	19.9	12.0	0.6		0.3	200	3/1	4	1.5
5	31.6	20.1	13.8	1.9		0.5	200	3/1	4	2.5
6	61.6	25.8	23.1	12.9	0.8	1.7	250	4/1	4	1.5
7 ^b	66.0	49.7	8.3	5.2		2.6	200	3/2	1a	2.5
8	59.6	32.0	22.1	7.4		1.5	300	3/2	1a	2.5
9 ^b	38.9	54.1	6.7	1.4		1.5	200	3/1	1a	3.5

Methanolhomologisierung mit Co(OAc)₂ und 1a, 2a bzw. 4 als Katalysatorkomponente, Synthesegas und Iod als Aktivator (T 180°C, molare Verhältnisse MeOH/Co/I/Ligand/Ru = 400/1/2/2/0.1)

^a Selektivität i = Ausbeute/Umsatz zu Produkt i = [Mole Methanol, umgesetzt zu Produkt i]/[Mole Methanol, insgesamt umgesetzt]×100. ^b 50 bar Synthesegas nach Druckabfall zugegeben.

zu gelangen, wurden Teilschritte des Autoklavenprozeses im Rahmen von Modellreaktionen untersucht [6]. Unter Verzicht auf den Hydrierpräkatalysator RuCl₃· $3H_2O$ und den Promotor I₂ wurde zunächst das Verhalten von Co(OAc)₂ gegenüber Ether-Phosphanen, speziell 2-Diphenylphosphinomethyl-1,4-dioxan [5], in verschiedenen Solventien (Methanol, Dichlormethan, Tetrahydrofuran) geprüft. Auch unter drastischen Reaktionsbedingungen, z. B. im Einschlussrohr bei 180°C oder beim Erhitzen beider Reaktanden ohne Lösungsmittel auf 90°C, tritt keine Umsetzung ein. Diese Ergebnisse stehen in Übereinstimmung mit der Beobachtung, dass im ersten Reaktionsdurchgang der Homologisierung von Methanol zu Acetaldehyd bei Verwendung von Co(OAc)₂ eine Reaktionshemmung auftritt [18]. Wahrscheinlich setzt sich Co(OAc)₂ mit dem im Katalysecyclus auftretenden Iodwasserstoff zu Cobalt(II)iodid um, erst dann erfolgt Komplexierung mit dem Ether-Phosphan. Diese Vermutung lässt sich in zweierlei Hinsicht bestätigen: Leitet man durch eine Lösung von Co(OAc)₂ in Methanol bei Anwesenheit von 2-Diphenylphosphinomethyl-1,4-dioxan Iodwasserstoff, so setzt sich das dabei gebildete

Versuchs-Nr.	Umsatz	Selektivitäten (%)					
	(%)	AcH	EtOH	MeOAc	EtOAc		
10 <i>a</i>	58.6	56.2	1.7	5.2	1.2		
11 ^a	58.0	42.9	1.6	4.5			
12 ^a	57.6	73.4	1.7	4.9	1.3		
13 ^a	56.9	67.7	1.8	5.3	1.2		
14 ^b	85.2	75.3	4.1	4.6	0.9		
15 ^b	78.3	77.7	5.4	7.1	1.0		

Vergleichende Untersuchungen der Methanolhydrocarbonylierung zu Acetaldehyd mit 2-Diphenylphosphinomethyl-1,4-dioxan und Co(OAc) $_2/I_2$ bzw. CoI $_2$ (CO/H $_2$ =1/1, T 180 °C)

^{*a*} Co(OAc)₂ und I₂, molare Verhältnisse MeOH/Co/I/L = 400/1/2/2, Anfangsdruck bei Raumtemperatur 200 bar, Reaktionszeit 2 h. ^{*b*} CoI₂, molare Verhältnisse MeOH/CoI₂/L = 400/1/2, Anfangsdruck bei Raumtemperatur 200 bar, Reaktionszeit 50 min.

Tabelle 4

Versuchs-Nr.	Umsatz	Selektivitäten (%)						
	(%)	AcH	MeCH(OMe) ₂	EtOH	MeOAc	HOAc	(min)	
16.1 ^a	57.3	16.2	21.4	2.3	5.6		8	
16.2	71.9	26.5	11.8	2.7	6.4		15	
16.3	74.3	51.9	9.3	4.3	8.9	0.2	24	
16.4	81.7	41.9	2.6	6.2	8.5		54	
17.1 ^{<i>b</i>}	39.1	5.7	36.9	1.9	1.5		8	
17.2	66.4	14.3	25.2	1.5	3.6	0.5	15	
17.3	72.1	29.1	32.5	2.5	6.1	1.3	22	
17.4	75.4	46.3	18.0	3.9	7.6	2.6	24	
17.5	88.7	30.1	3.2	3.6	4.7	3.5	54	

Methanolhydrocarbonylierung zu Acetaldehyd mit CoI₂ und [2-(1-Methylethoxy)ethyl]diphenylphosphan (3a) (T 180 °C, Synthesegasdruck bei Raumtemperatur 200 bar, H₂/CO-Verhältnis = 1/1)

^a Molare Verhältnisse MeOH/CoI₂/L = 400/1/2. ^b Molare Verhältnisse MeOH/CoI₂/L = 400/1/1.

 CoI_2 sofort mit dem P,O-Liganden um. Im Rahmen von Methanolhydrocarbonylierungsversuchen unter Druck, bei denen $Co(OAc)_2$ durch CoI_2 ersetzt wird, zeigt sich, dass letzteres im ersten Durchgang zu einer Steigerung von Umsatz und Selektivität bei gleichzeitiger Verkürzung der Reaktionslaufzeit führt (vgl. Tab. 3).

Bei Homologisierungsversuchen von Methanol zu Acetaldehyd (vgl. Tab. 4) dienten CoI₂ und das P,O-Phosphan 3a als Katalysatorkomponenten. In bestimmten Zeitintervallen wurden Proben entnommen und im Hinblick auf ihre Zusammensetzung gaschromatographisch analysiert. Aus den Versuchsreihen 16 und 17 geht deutlich hervor, dass der Methanolumsatz mit zunehmender Reaktionszeit ansteigt, die Acetaldehyd-Selektivität jedoch schon nach ca. 1/2 h ihr Maximum überschreitet. Bereits in der Aufheizphase der Hochdruckversuche bildet sich zunächst Acetaldehyddimethylacetal (durch GC-MS-Analyse nachgewiesen), das bei höheren Temperaturen Acetaldehyd und Methanol rückbildet. Die Erhöhung des Col₂/Ligand-Verhältnisses von 1/1 auf 1/2 sollte eigentlich zu merklich besseren Acetaldehyd-Selektivitäten führen [17]. Man beobachtet jedoch gerade das Gegenteil. Die Verminderung der Bildung von Acetaldehyd nach längerer Reaktionszeit deutet auf eine säurekatalysierte Spaltung von 3a möglicherweise unter der Einwirkung von HI hin, welche durch die sekundäre Isopropylgruppe am Sauerstoff begünstigt wird [19]. Dieser Vorgang führt zu einer Desaktivierung des Katalysatorsystems. Gestützt wird diese Vermutung durch die Tatsache, dass der erneute Einsatz des gleichen Katalysatorgemischs in weiteren Druckversuchen praktisch keine nennenswerte Selektivität zu Acetaldehyd erbringt.

Mit den in den Tabellen 3 und 4 durchgeführten Hochdruckversuchen konnte gezeigt werden, dass sich dioxanhaltige Phosphane unter den gewählten Versuchsbedingungen im Autoklaven wesentlich resistenter verhalten und zu entscheidend besseren Methanolumsätzen und Acetaldehyd-Selektivitäten führen als vergleichsweise offenkettige Ether-Phosphane, insbesondere solche wie **3a** [20].

Experimenteller Teil

Alle Umsetzungen erfolgten in einer gereinigten Stickstoff- bzw. Argonatmosphäre unter strengstem Ausschluss von Luftsauerstoff und Feuchtigkeit. Die verwendeten

Lösungsmittel waren sorgfältig getrocknet und N_2 -gesättigt. THF wurde frisch über LiAl H_4 destilliert.

Allgemeine Vorschrift für die Synthese der Alkoxyethyldiphenyl- und -cyclohexylphosphane **1a**, **b**, **3a**, **b**

Zu einer Lösung von $(C_6H_5)_2$ PH bzw. $(C_6H_{11})_2$ PH in 200 ml THF wird bei 0°C eine solche von n-Butyllithium in n-Hexan getropft. Es bilden sich dunkelrote bzw. tiefgelbe Lösungen von $(C_6H_5)_2$ PLi bzw. $(C_6H_{11})_2$ PLi, die man unter Rühren auf 20°C erwärmen lässt. Anschliessend wird 1/2 h gerührt, danach zum Sieden erhitzt und innerhalb 1 h CICH₂CH₂OCH₃ bzw. CICH₂CH₂OCH(CH₃)₂ in 20 ml THF zugetropft. Die Reaktionslösung hellt sich kontinuierlich auf. Man rührt weitere 15 min unter Rückfluss und kühlt die Lösung auf 20°C ab. Nach Zugabe von 250 ml sauerstofffreiem, NH₄Cl-gesättigtem Wasser trennt man die organische Phase ab, trocknet sie über Na₂SO₄ und zieht das Solvensgemisch im Hochvakuum bei 20°C ab. Nach Destillation des Rückstands fallen die Produkte **1a, b, 3a, b** als farblose Flüssigkeiten an.

(2-Methoxyethyl)diphenylphosphan (1a). Einwaage 37.2 g (200 mmol) $(C_6H_5)_2PH$, 125 ml (200 mmol) einer 1.6 N n-Butyllithium-Lösung in n-Hexan, 18.8 g (200 mmol) ClCH₂CH₂OCH₃. Ausbeute 36.1 g (74%). Sdp. 115–120 °C/0.4 mbar. ¹H-NMR (CDCl₃): δ (ppm) 2.45–2.27 (m; PCH₂CH₂OCH₃), 3.62–3.33 (m; PCH₂CH₂OCH₃), 3.24 (s; PCH₂CH₂OCH₃), 7.18–7.57 (m; P(C₆H₅)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 138.54–128.09 (m; C-Ph), 69.65 (d, ²J(PC) 24.3 Hz; PCH₂CH₂OCH₃), 58.51 (s; PCH₂CH₂OCH₃), 28.65 (d; ¹J(PC) 13.1 Hz; PCH₂CH₂OCH₃). (Gef.: C, 73.71; H, 7.12; P, 13.05; Molmasse massenspektrometr. (70 eV, 200°C), 244. C₁₅H₁₇OP ber.: C, 73.75; H, 7.01; P, 12.68%; Molmasse, 244.3).

Dicyclohexyl(2-methoxyethyl)phosphan (1b). Einwaage 14.9 g (75.0 mmol) $(C_6H_{11})_2PH$, 30.0 ml (75.0 mmol) einer 2.5 N n-Butyllithium-Lösung in n-Hexan, 7.05 g (75.0 mmol) ClCH₂CH₂OCH₃. Ausbeute 12.33 g (65%). Sdp. 122–128°C/1.6 mbar. ¹H-NMR (CDCl₃): δ (ppm) 3.62–3.34 (m; PCH₂CH₂OCH₃); 3.34 (s; PCH₂CH₂OCH₃), 1.91–1.19 (m; PCH₂CH₂OCH₃, P(C₆H₁₁)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 71.5 (d, ²J(PC) 32.3 Hz; PCH₂CH₂OCH₃), 57.24 (s; PCH₂CH₂OCH₃), 32.42 (d, ¹J(PC) 12.7 Hz; PCH₂CH₂OCH₃), 29.75–20.82 (m; P(C₆H₁₁)₂). (Gef.: C, 70.15; H, 11.27; Molmasse massenspektrometr. (70 eV, 200°C), 256. C₁₅H₂₉OP ber.: C, 70.27; H, 11.40%; Molmasse, 256.37).

[2-(1-Methylethoxy)ethyl]diphenylphosphan (**3a**). Einwaage 15.25 g (82.0 mmol) $(C_6H_5)_2PH$, 32.8 ml (82.0 mmol) einer 2.5 N n-Butyllithium-Lösung in n-Hexan, 10.0 g (82.0 mmol) $(CH_3)_2CHOCH_2CH_2CH_2Cl$. Ausbeute 15.7 g (70%). Sdp. 167–172°C/1.6 mbar. ¹H-NMR (CDCl₃): δ (ppm) 3.67–3.41 (m; PCH₂-CH₂OCH(CH₃)₂), 2.47–2.27 (m; PCH₂CH₂OCH(CH₃)₂), 1.11 (d, ³J(H³H⁴) 6.1 Hz; PCH₂CH₂OCH(CH₃)₂), 7.47–7.26 (m; P(C₆H₅)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 138.75–128.02 (m; P(C₆H₅)₂), 71.20 (s; PCH₂CH₂OCH(CH₃)₂), 65.04 (d, ²J(PC) 24.8 Hz; PCH₂CH₂OCH(CH₃)₂), 29.21 (d, ¹J(PC) 12.7 Hz; PCH₂CH₂OCH(CH₃)₂), 21.91 (s; PCH₂CH₂OCH(CH₃)₂). (Gef.: C, 75.17; H, 7.96; Molmasse massenspektrometr. (70 eV, 200°C), 272. C₁₇H₂₁OP ber.: C, 74.98; H, 7.77%; Molmasse 272.3).

Dicyclohexyl[2-(1-methylethoxy)ethyl]phosphan (3b). Einwaage 14.85 g (75.0 mmol) (C_6H_{11})₂PH, 30.0 ml (75.0 mmol) einer 2.5 N n-Butyllithium-Lösung in

n-Hexan, 9.15 g (75.0 mmol) (CH₃)₂CHOCH₂CH₂Cl. Ausbeute 11.05 g (55%). Sdp. 145–149 ° C/1.6 mbar. ¹H-NMR (CDCl₃): δ (ppm) 3.66–3.36 (m; PCH₂CH₂OCH (CH₃)₂), 1.75–1.11 (m; PCH₂CH₂OCH(CH₃)₂, P(C₆H₁₁)₂), 1.15 (d, ³J(H³H⁴) 6.1 Hz; PCH₂CH₂OCH(CH₃)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 70.57 (s; PCH₂CH₂OCH(CH₃)₂), 67.20 (d, ²J(PC) 33.8 Hz; PCH₂CH₂OCH(CH₃)₂), 32.52 (d, ¹J(PC) 17.2 Hz; PCH₂CH₂OCH(CH₃)₂), 30.0–21.57 (m; P(C₆H₁₁)₂), 21.57 (s; PCH₂CH₂OCH(CH₃)₂). Gef.: C, 72.47; H, 12.28; Molmasse massenspektrometr. (70 eV, 200 ° C), 284. C₁₇H₃₃OP ber.: C, 71.80; H, 11.69%; Molmasse, 284.4).

Allgemeine Vorschrift für die Synthese der Bis(2-methoxyethyl)phenyl- und -cyclohexylphosphane 2a, b

Zu einer Lösung von $C_6H_5PH_2$ bzw. $C_6H_{11}PH_2$ in 200 ml n-Hexan wird unter Eiskühlung innerhalb 2 h die entsprechende Menge einer Lösung von n-Butyllithium in n-Hexan getropft, wobei orangegelbes, schwerlösliches $C_6H_5PLi_2$ bzw. gelbes $C_6H_{11}PLi_2$ ausfällt. Anschliessend wird die Suspension 1/2 h unter Rückfluss gerührt. Die auf 20°C abgekühlte Lösung versetzt man nun langsam mit der äquimolaren Menge ClCH₂CH₂OCH₃ in 30 ml n-Hexan. Mit Fortschreiten der Reaktion entfärbt sich die Reaktionslösung. Anschliessend wird 1 h unter Rückfluss erhitzt und 12 h bei 20°C bis zur vollständigen Umsetzung gerührt. Die hellgelbe bis farblose Suspension filtriert man über Kieselgel (P4) und zieht das Solvens im Vakuum ab. Nach Destillation des gelben Rückstands erhält man **2a**, **b** als farblose Flüssigkeiten.

Bis(2-methoxyethyl)phenylphosphan (2a). Einwaage 5.1 g (46.0 mmol) C₆H₃PH₂, 57.5 ml (92.0 mmol) einer 1.6 N n-Butyllithium-Lösung in n-Hexan, 8.5 g (92.0 mmol) ClCH₂CH₂OCH₃. Ausbeute 6.9 g (66%). Sdp. 85–90 ° C/0.4 mbar. ¹H-NMR (CDCl₃): δ (ppm) 2.15–1.96 (m; P(CH₂CH₂OCH₃)₂), 3.29 (s; P(CH₂CH₂OCH₃)₂), 3.61–3.29 (m; P(CH₂CH₂OCH₃)₂), 7.27–7.61 (m; PC₆H₅). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 138.01–128.0 (m; C-Ph), 69.84 (d, ²J(PC) 20.8 Hz; P(CH₂CH₂OCH₃)₂), 58.18 (s; P(CH₂CH₂OCH₃)₂), 28.77 (d, ¹J(PC) 12.9 Hz; P(CH₂CH₂OCH₃)₂). (Gef.: C, 63.53; H, 8.29; P, 13.98; Molmasse massenspektrometr. (70 eV, 200 ° C), 226. C₁₂H₁₉O₂P ber.: C, 63.70; H, 8.46; P, 13.68%; Molmasse, 226.3).

Cyclohexylbis(2-methoxyethyl)phosphan (2b). Einwaage 10.0 g (86.2 mmol) $C_6H_{11}PH_2$, 68.96 ml (172.4 mmol) einer 2.5 N n-Butyllithium-Lösung in n-Hexan, 16.2 g (172.4 mmol) ClCH₂CH₂OCH₃. Ausbeute 8.0 g (40%). Sdp. 92–96°C/1.6 mbar. ¹H-NMR (CDCl₃): δ (ppm) 3.65–3.37 (m; P(CH₂CH₂OCH₃)₂), 3.33 (s; P(CH₂CH₂OCH₃)₂), 1.85–1.18 (m; P(CH₂CH₂OCH₃)₂, PC₆H₁₁). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 70.56 (d, ²J(PC) 23.0 Hz; P(CH₂CH₂OCH₃)₂), 59.03 (s; P(CH₂CH₂OCH₃)₂), 34.98 (d, ¹J(PC) 9.7 Hz; P(CH₂CH₂OCH₃)₂), 29.21–24.0 (m; PC₆H₁₁). (Gef.: C, 61.87; H, 11.03; Molmasse massenspektrometr. (70 eV, 200°C), 232. C₁₂H₂₅O₂P ber.: C, 62.04; H, 10.85%; Molmasse, 232.3).

Tris(2-methoxyethyl)phosphan (4). Zu einer Suspension von 3.5 g (113.0 mmol) getrocknetem farblosem Phosphor in 500 ml Dimethoxyethan (DME) werden 11.95 g Na/K-Legierung, bestehend aus 9.95 g (250.0 mmol) K und 2.0 g (90.0 mmol) Na, getropft. Es bildet sich ein Gemisch aus schwarzem Na₃P/K₃P. Zur Vervollständigung der Reaktion wird weitere 24 h unter Rückfluss gerührt. Anschliessend werden innerhalb von 2 h 31.1 g (339.0 mmol) ClCH₂CH₂OCH₃ zugetropft, wobei sich die Reaktionslösung allmählich entfärbt. Nach 48 h ist die

Reaktion beendet. Unlösliches wird über Seesand (P4) abfiltriert, das Solvens im Vakuum entfernt und der ölige Rückstand einer fraktionierten Destillation unterworfen. Ausbeute 6.8 g (29%). Sdp. 65–70 ° C/13.3 mbar. ¹H-NMR (CDCl₃): δ (ppm) 3.81–3.34 (m; P(CH₂CH₂OCH₃)₃), 3.33 (s; P(CH₂CH₂OCH₃)₃), 1.79 (dt, ²J(PH) 1.2 Hz, ³J(H¹H²) 4.7 Hz; P(CH₂CH₂OCH₃)₃). (Gef.: C, 49.05; H, 9.76; Molmasse massenspektrometr. (70 eV, 200 ° C), 208. C₉H₂₁O₃P ber.: C, 51.91; H, 10.16%; Molmasse 208.24).

Allgemeine Vorschrift für die Synthese der Pentacarbonylphosphanwolfram-Komplexe 5a, b, 6b

Eine Lösung von W(CO)₆ in 230 ml THF wird bei 20°C 2 h unter Rühren mit einer Quecksilbertauchlampe bestrahlt. Hierzu tropft man innerhalb 1/2 h in geringem Unterschuss das entsprechende in 20 ml THF gelöste Phosphan und rührt weitere 5 h bei Raumtemperatur. Das Solvens wird im Hochvakuum vollständig abgezogen, der zähe Rückstand in 30 ml n-Pentan digeriert und die Lösung filtriert (P4). Bei -30°C fallen 5a, b und 6b als farblose bis hellgelbe Kristalle an. Durch Sublimation wird restliches W(CO)₆ entfernt.

Pentacarbonyl[(2-methoxyethyl)diphenylphosphan]wolfram (5a). Einwaage 2.11 g (6.0 mmol) W(CO)₆, 1.42 g (5.8 mmol) **la**. Ausbeute 2.22 g (67%). Schmp. 48°C. ¹H-NMR (CDCl₃): δ (ppm) 7.66–7.39 (m; P(C₆H₅)₂), 2.96–2.69 (m; PCH₂CH₂OCH₃), 3.55–3.26 (m; PCH₂CH₂OCH₃), 3.20 (s; PCH₂CH₂OCH₃). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 196.86 (d, ²J(PC) 6.8 Hz; W-CO), 135.89–128.76 (m; P(C₆H₅)₂), 68.23 (d, ²J(PC) 6.0 Hz; PCH₂CH₂OCH₃), 58.55 (s; PCH₂CH₂OCH₃), 33.19 (d, ¹J(PC) 25.0 Hz; PCH₂CH₂OCH₃). (Gef.: C, 42.38; H, 3.09; W, 31.75; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W), 568. C₂₀H₁₇O₆PW ber.: C, 42.28; H, 3.02; W, 32.36%. Molmasse, 568.2).

Pentacarbonyl[dicyclohexyl(2-methoxyethyl)phosphan]wolfram (**5b**). Einwaage 2.11 g (6.0 mmol) W(CO)₆, 1.49 g (5.8 mmol) **1b**. Ausbeute 2.42 g (72%). Schmp. 74–76 °C. ¹H-NMR (CDCl₃): δ (ppm) 3.75–3.46 (m; PCH₂CH₂OCH₃), 3.35 (s; PCH₂CH₂OCH₃), 2.15 (dt, ²J(PC) 7.7 Hz; ³J(H¹H²) 7.7 Hz; PCH₂CH₂OCH₃), 2.0–1.26 (m; P(C₆H₁₁)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 200.06 (d, ²J(PC) 38.3 Hz; W-CO (*trans*)), 197.76 (d, ²J(PC) 6.5 Hz; W-CO (*cis*)), 69.79 (d, ²J(PC) 2.3 Hz; PCH₂CH₂OCH₃), 58.54 (s; PCH₂CH₂OCH₃), 36.95 (d, ¹J(PC) 22.08 Hz; PCH₂CH₂OCH₃), 28.7–26.0 (m; P(C₆H₁₁)₂). (Gef.: C, 41.57; H, 5.35; W, 30.92; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W), 580. C₂₀H₂₉O₆PW ber.: C, 41.40; H, 5.04; W, 31.68%; Molmasse 580.3).

Pentacarbonyl{dicyclohexyl[2-(1-methylethoxy)ethyl]phosphan}wolfram (6b). Einwaage 2.11 g (6.0 mmol) W(CO)₆, 1.65 g (5.8 mmol) 3b. Ausbeute 2.31 g (66%). Schmp. 106 ° C. ¹H-NMR (CDCl₃): δ (ppm) 3.78–3.45 (m; PCH₂CH₂OCH(CH₃)₂), 2.14 (dt, ²J(PC) 7.9, ³J(H¹H²) 7.9 Hz; PCH₂CH₂OCH(CH₃)₂), 2.1–1.1 (m; P(C₆H₁₁)₂), 1.17 (d, ³J(H³H⁴) 6.1 Hz; PCH₂CH₂OCH(CH₃)₂). ¹³C{¹H}-NMR (CDCl₃): δ (ppm) 71.69 (s; PCH₂CH₂OCH(CH₃)₂), 65.38 (d, ²J(PC) 4.2 Hz; PCH₂CH₂OCH(CH₃)₂), 37.0 (d, ¹J(PC) 23.4 Hz; PCH₂CH₂OCH(CH₃)₂), 28.75–26.05 (m; P(C₆H₁₁)₂), 22.05 (s; PCH₂CH₂OCH(CH₃)₂). (Gef.: C, 43.91; H, 5.65; W, 31.02; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W), 608. C₂₂H₃₃O₆PW ber.: C, 43.30; H, 5.45; W, 30.12%; Molmasse, 608.3). Allgemeine Vorschrift zur Synthese der Tetracarbonylphosphanwolfram-Komplexe 7a, 7b, 8b

Eine Lösung von **5a**, **b** bzw. **6b** in 80 ml n-Pentan wird unter Durchleiten eines leichten Argon- oder N₂-Stroms bei $-50 \degree C 1/2$ h mit einer Quecksilbertauchlampe bestrahlt. Nach kurzer Zeit bildet sich ein leuchtend gelber Niederschlag, der bei $-50 \degree C$ abfiltriert (P4) wird. Man wäscht zweimal mit 10 ml kaltem n-Pentan und entfernt restliches Solvens im Hochvakuum. Die Komplexe **7a**, **b** and **8b** lassen sich als gelbe, relativ luftstabile Komplexe isolieren.

Tetracarbonyl[(2-methoxyethyl)diphenylphosphan-O,P]wolfram (7a). Einwaage 0.8 g (1.41 mmol) **5a**. Ausbeute 0.42 g (55%). Zers.-P. 104–108°C. (Gef.: C, 42.31; H, 3.28; W, 33.14; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W); 540. $C_{19}H_{17}O_5PW$ ber.: C, 42.26; H, 3.17; W, 34.05%; Molmasse, 539.99).

Tetracarbonyl[dicyclohexyl(2-methoxyethyl)phosphan-O,P]wolfram (7b). Einwaage 0.7 g (1.21 mmol) **5b**. Ausbeute 0.49 g (74%). Zers.-P. 125–128°C. (Gef.: C, 41.24; H, 5.45; W, 32.05; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W), 552. $C_{19}H_{29}O_5PW$ ber.: C, 41.32; H, 5.29; W, 33.29%; Molmasse 552.26).

Tetracarbonyl{dicyclohexyl[2-(1-methylethoxy)ethyl]phosphan-O,P}wolfram (**8**b). Einwaage 1.75 g (2.9 mmol) **6b**. Ausbeute 1.3 g (77%). ¹H-NMR (C₆D₆, 10 ° C): δ (ppm) 3.46 (sep, ³J(H³H⁴) 6.4 Hz; PCH₂CH₂OCH(CH₃)₂), 2.88 (dt, ³J(H¹H²) 6.0 Hz, ³J(PH) 18.2 Hz; PCH₂CH₂OCH(CH₃)₂), 2.0–0.8 (m; PCH₂CH₂OCH(CH₃)₂, P(C₆H₁₁)₂), 0.89 (d, ³J(H³H⁴) 6.4 Hz; PCH₂CH₂OCH(CH₃)₂). (Gef.: C, 43.54; H, 5.93; W, 30.79; Molmasse massenspektrometr. (FD, bez. auf ¹⁸⁴W), 580. C₂₁H₃₃O₅PW ber.: C, 43.46; H, 5.73; W, 31.68%; Molmasse, 580.31).

Hochdruckversuche

Alle Hochdruckversuche werden mit 50.0 g (1561 mmol) Methanol bei einer Anfangstemperatur von 180°C durchgeführt.

Bei den Versuchen 1–9 dienten Katalysatorgemische, bestehend aus 0.97 g (3.9 mmol) Co $(O_2CCH_3)_2 \cdot 4H_2O$, 0.11 g (0.39 mmol) RuCl₃ $\cdot 3H_2O$, 0.99 g (7.8 mmol) I₂ und 7.8 mmol der entsprechenden Menge P,O-Ligand **1a**, **2a** oder **4**.

Die Versuche 10–13 wurden bei 200 bar Synthesegas-Anfangsdruck und einer Reaktionslaufzeit von 2 h mit einem Katalysatorgemisch, bestehend aus 0.97 g (3.9 mmol) Co(O_2CCH_3)₂ · 4H₂O, 0.99 g (7.8 mmol) I₂ und 2.23 g (7.8 mmol) 2-Diphenylphosphinomethyl-1,4-dioxan bei einem CO/H₂-Verhältnis von 1/1 durchgeführt.

Mischungen aus 1.22 g (3.9 mmol) CoI_2 und 2.23 g (7.8 mmol) 2-Diphenylphosphinomethyl-1,4-dioxan in Methanol wurden bei den Versuchen 14 und 15 einem Anfangsdruck von 20 bar und einem CO/H₂-Verhältnis von 1/1 über eine Reaktionszeit von 50 min ausgesetzt.

Bei Versuch 16 wurde ein Katalysatorgemisch der Zusammensetzung 1.22 g (3.9 mmol) CoI_2 und 2.12 g (7.8 mmol) **3a** verwendet.

Zur Durchführung des Versuchs 17 kam eine Mischung, bestehend aus 1.22 g (3.9 mmol) CoI_2 und 1.06 g (3.9 mmol) **3a**, in Methanol zum Einsatz.

Die Identifizierung der einzelnen Komponenten erfolgte durch eine gaschromatographische Analyse anhand der Retentionszeiten. Als interner Standard zur quantitativen Auswertung eignete sich Isobutanol. Der Methanolumsatz wurde aus der Menge an nicht umgesetztem Methanol, die Selektivitäten aus der Menge an verbrauchtem Methanol errechnet.

Massen-, IR-, NMR-Spektren, Mikroelementaranalysen, photochemische Reaktionen, Hochdruckreaktionen und Gaschromatographie

Massenspektren: Varian MAT 711 A. IR-Spektren: Beckman IR 12 und Perkin-Elmer 598 Infrared Spektrophotometer mit Datenstation 3600. ¹H-, ¹³C{¹H}- und ³¹P{¹H}-NMR-Spektren: Bruker WP 80 und Bruker AC 80 (80.00, 20.11 bzw. 32.39 und 80.13, 20.15 bzw. 32.44 MHz; int. Standard TMS bzw. ext. Standard 85% Phosphorsäure/D₂O oder 85% Phosphorsäure/Aceton- d_6). Mikroelementaranalysen: Carlo Erba, Modell 1104 und Atomabsorptionsspektrometer Perkin-Elmer, Modell 4000. Photoreaktionen: Hg-Hochdrucklampe 5Q 150 Original Hanau. Hochdruckreaktionen: Anlage der Fa. Haage, Autoklav Typ 1220 mit 250 ml Volumen und mechanischer Rühreinrichtung; Vectra Personal Computer Modell 35. Gaschromatographie: Fractovap 2400 T von Carlo Erba Instruments mit FID und Dünnfilm-Quarz-Kapillarsäule SP 1000, Länge 50 m; Integrator 3390 A der Fa. Hewlett Packard.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie e. V., Fonds der Chemischen Industrie, und dem Bundesminister für Forschung und Technologie (BMFT) für die finanzielle Förderung dieser Arbeit. Der Degussa, der Wacker-Chemie GmbH und der BASF-Aktiengesellschaft sind wir für die Überlassung wertvoller Ausgangsverbindungen zu Dank verpflichtet.

Literatur

- 1 E. Lindner, U. Schober, R. Fawzi, W. Hiller, U. Englert und P. Wegner, Chem. Ber., im Druck.
- 2 J. Wender, Catal. Rev.-Sci. Eng., 26 (1984) 303.
- 3 D.L. King und J.H. Grate, Chemtech., (1985) 244.
- 4 E. Lindner, H.A. Mayer und P. Wegner, Chem. Ber., 119 (1986) 2616.
- 5 E. Lindner, A. Sickinger und P. Wegner, J. Organomet. Chem., 312 (1986) C37.
- 6 E. Lindner und B. Andres, Chem. Ber., 120 (1987) 761.
- 7 W.E. McEwen, A.B. Janes, J.W. Knapczyk, V.L. Kyllingstad, When-I Shiau, S. Shore und J.H. Smith, J. Am. Chem. Soc., 100 (1978) 7304.
- 8 K. Issleib und A. Tzschach, Chem. Ber., 92 (1959) 1118.
- 9 J. Ellis und E. Flom, J. Organomet. Chem., 99 (1975) 263.
- 10 G. Becker und W. Hölderlich, Chem. Ber., 108 (1975) 2484.
- 11 G.L. Geoffroy und M.S. Wrighton, Organometallic Photochemistry, Academic Press, New York 1980; W. Strohmeier, Angew. Chem., 76 (1964) 873; Angew. Chem., Int. Ed. Engl., 3 (1964) 730.
- 12 P.E. Garrou und G.E. Hartwell, J. Organomet. Chem., 55 (1973) 331.
- 13 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 14 Raumgruppe $Pna2_1$, a 1634.2(4), b 883.9(3), c 1427.8(4) pm, δ_{ber} 1.778 g/cm³, Z = 4, T 100 °C, Patterson.
- 15 J. Korff und K.-H. Keim in C₁-Chemie, Expertengespräch und Statusseminar, veranstaltet von der Projektleitung Rohstofforschung, KFA Jülich GmbH, im Auftrag des BMFT, (1982) 1; M. Röper und H. Loevenich, ibid., (1981) 11; H. Bahrmann und W. Lipps, ibid., (1982) 27.
- 16 E. Lindner, C. Scheytt und P. Wegner, J. Organomet. Chem., 308 (1986) 311.
- 17 H. Loevenich und M. Röper, C₁ Mol. Chem., 1 (1984) 155.
- 18 B. Karle, Diplomarbeit, Universität Tübingen 1987.
- 19 H. Meerwein in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. VI/3, S. 146, Georg Thieme Verlag, Stuttgart, 1965.
- 20 E. Lindner, U. Schober, E. Glaser, H. Norz und P. Wegner, Z. Naturforsch. B, 42, im Druck.